Performance of H-LU Preconditioning for Sparse Matrices
نویسندگان
چکیده
In this paper we review the technique of hierarchical matrices and put it into the context of black-box solvers for large linear systems. Numerical examples for several classes of problems from medium to large scale illustrate the applicability and efficiency of this technique. We compare the results with those of several direct solvers (which typically scale quadratically in the matrix size) as well as an iterative solver (an algebraic multigrid method) which scales linearly (if it converges in O(1) steps).
منابع مشابه
Toward an Effective Sparse Approximate Inverse Preconditioner
Sparse approximate inverse preconditioners have attracted much attention recently, because of their potential usefulness in a parallel environment. In this paper, we explore several performance issues related to effective sparse approximate inverse preconditioners (SAIPs) for the matrices derived from PDEs. Our refinements can significantly improve the quality of existing SAIPs and/or reduce th...
متن کاملOn Preconditioning Schur Complement and Schur Complement Preconditioning
We study two implementation strategies to utilize Schur complement technique in multilevel recursive incomplete LU preconditioning techniques (RILUM) for solving general sparse matrices. The first strategy constructs a RILUM to precondition the original matrix. The second strategy solves the first Schur complement matrix using the lower level parts of the RILUM as the preconditioner. We discuss...
متن کاملEnhancing Performance and Robustness of ILU Preconditioners by Blocking and Selective Transposition
Incomplete factorization is one of the most effective general-purpose preconditioning methods for Krylov subspace solvers for large sparse systems of linear equations. Two techniques for enhancing the robustness and performance of incomplete LU factorization for sparse unsymmetric systems are described. A block incomplete factorization algorithm based on the Crout variation of LU factorization ...
متن کاملQuantitative Methods Inquires 179 IMPROVING THE PERFORMANCE OF SPARSE LU MATRIX FACTORIZATION USING A SUPERNODAL ALGORITHM
In this paper we investigate a method to improve the performance of sparse LU matrix factorization used to solve unsymmetric linear systems, which appear in many mathematical models. We introduced and used the concept of the supernode for unsymmetric matrices in order to use dense matrix operations to perform the LU factorization for sparse matrices. We describe an algorithm that uses supernode...
متن کاملApproximate Inverse Preconditioners for General Sparse Matrices
The standard Incomplete LU (ILU) preconditioners often fail for general sparse indeenite matrices because they give rise tòunstable' factors L and U. In such cases, it may be attractive to approximate the inverse of the matrix directly. This paper focuses on approximate inverse preconditioners based on minimizing kI?AMk F , where AM is the preconditioned matrix. An iterative descent-type method...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003